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On Rayleigh’s computation of the ‘end
correction’, with application to the compression

wave generated by a train entering a tunnel

By M. S. H O W E
Boston University, College of Engineering, 110 Cummington Street, Boston, MA 02215, USA

(Received 23 June 1998 and in revised form 30 October 1998)

Rayleigh’s (1926, Appendix A) method for the approximate calculation of potential
flow from the open end of a semi-infinite flanged cylinder is applied to obtain
analytical representations of Green’s function describing the generation of sound
waves within a flanged cylinder by sources located in the neighbourhood of the
open end. Detailed results are given for the circular cylinder considered by Rayleigh
and extension made to a flanged cylinder of rectangular cross-section. The validity of
various approximations is assessed by comparison with the exact solution available (by
the method of conformal transformation) for potential flow from a two-dimensional,
flanged duct. The results are used to compare the profiles and the pressure gradients
of compression waves generated when a high-speed train enters tunnels of circular
and rectangular cross-sections.

1. Introduction
The wavelengths λn of standing acoustic waves in a rigid, narrow tube of length `,

open to the atmosphere at one end, are given by

λn =
4(`+ `′)
2n− 1

, n = 1, 2, . . . ,

where the additional length `′ is called the ‘end correction’. For a circular cylindrical
tube of radius R with an ‘unflanged’ open end, `′ ≈ 0.61R, and `′ ≈ 0.82R for a
flanged end, which is flush with an infinite, plane rigid wall (Rayleigh 1870, 1926). The
magnitude of the end correction depends on the inertia of fluid set in motion outside
the tube in the neighbourhood of the opening, and the resonance frequencies are the
same as those predicted by elementary arguments when the pressure is assumed to
vanish at a distance `′ beyond the end.

Rayleigh gave the following interpretation of the end correction. Consider a long
tube of cross-sectional areaA with a freely moving piston of equal area that advances
at infinitesimal Mach number towards the open end, so that the fluid motion may
be regarded as incompressible. For an ideal fluid, of uniform mean density ρo, the
motion is also irrotational, with velocity potential φ∗(x), say. If the piston moves at
unit speed, φ∗ is a solution of Laplace’s equation whose normal derivative (directed
into the fluid) satisfies ∂φ∗/∂n = 1 on the face of the piston and vanishes on the walls
of the tube. Then the energy T of the incompressible motion is entirely kinetic, and

T ≡ 1
2
ρo

∫
V

(∇φ∗)2 d3x = 1
2
ρoA(`+ `′), (1.1)
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where the integration is over the fluid V , outside the tube and within the tube between
the open end and the piston, and `�A1/2 is the instantaneous distance of the piston
from the open end.

Any other possible velocity distribution of the incompressible motion produced
by the piston, that satisfies the same boundary conditions on the walls and piston,
is necessarily rotational, with velocity ∇φ∗ + v, where curl v 6= 0. Kelvin’s theorem
(Lamb 1932, § 45) asserts that the kinetic energy T ′ of this motion cannot be less
than the kinetic energy (1.1) of the irrotational flow, a result that can be expressed in
the form

`+ `′ 6
2T ′

ρoA . (1.2)

Rayleigh (1870, 1926) exploited this minimum property to estimate the value of `′
by first calculating T ′ from a solution of the piston problem containing one or more
disposable parameters, whose values were then chosen to make T ′ a minimum.

The potential function φ∗(x) is defined only to within an arbitrary, additive constant.
Take the origin O of rectangular coordinates x = (x, y, z) in the plane of the open
end, with the negative x-axis along the axis of the tube, and choose this constant so
that at

φ∗(x) ∼ O
(

1

|x|
)
→ 0 as |x| → ∞ outside the tube. (1.3)

Then φ∗∇φ∗ ∼ 1/|x|3 as |x| → ∞ outside the tube, and (1.1) and the divergence
theorem imply that∫

V

(∇φ∗)2 d3x = −
∫
Sp

φ∗
∂φ∗

∂x
dy dz ≡ A(`+ `′), (1.4)

where the second integration is over the face Sp of the piston at x = −`. When −x
greatly exceeds A1/2 within the tube, the fluid motion is sensibly uniform at unit
velocity parallel to the tube, and (1.4) yields

φ∗(x) ∼ x− `′ as x→ −∞ in the tube. (1.5)

The function φ∗ plays an important role in the calculation of sound generated by
sources in the neighbourhood of the open end of the tube, provided the frequency is
sufficiently small that the characteristic acoustic wavelength is much larger than the
tube diameter. The velocity potential ϕ(x, t) of the sound generated by a distribution
of volume sources q(x, t) is governed by the inhomogeneous wave equation(

1

c2
o

∂2

∂t2
− ∇2

)
ϕ = −q(x, t), (1.6)

where co is the speed of sound. The solution with outgoing wave behaviour can be
expressed in the form

ϕ(x, t) = −
∫∫

G(x, x′; t− τ) q(x′, τ) d3x′ dτ, (1.7)

where Green’s function G(x, x′; t− τ) is the solution of (1.6) when the right-hand side
is replaced by δ(x−x′)δ(t−τ). The integrations in (1.7) are over the whole of the fluid
and all times τ, and the normal derivatives of G satisfy ∂G/∂xn = 0 and ∂G/∂x′n = 0
respectively when the field points x, x′ lie on the rigid interior or exterior surfaces of
the tube.

When the tube is semi-infinite (extending to x = −∞), the sound radiated into the
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Figure 1. (a) Train entering tunnel. (b) Dynamically equivalent configuration consisting of the train
and its image in the ground plane entering a flanged tube formed by the reflection of the tunnel
walls in the ground plane. The dimensions L and h are discussed in § 4.2.

tube, produced by the interaction of low-frequency sources q with the open end is
determined by the following compact approximation to G (Howe 1998a):

G(x, x′; t− τ) ≈ co

2A
{

H(t− τ− |φ∗(x)− φ∗(x′)|/co)
−H(t− τ+ (φ∗(x) + φ∗(x′))/co)

}
, (1.8)

where H(x) = 0, 1 according as x 7 0 is the Heaviside step function. This formula is
applicable provided that the acoustic wavelength greatly exceeds the tube diameter. It
is uniformly valid when regarded as a function of either x or x′ provided at least one
of these points lies within the tube at a distance from the opening large compared to
the diameter.

The approximation (1.8) has been applied to determine the compression wave
generated when a high-speed train, depicted schematically in figure 1(a), enters a long
tunnel (Howe 1998a, b). The train is modelled by a distribution of volume sources of
constant strength convecting in the negative x-direction at the speed U of the train,
i.e.

q(x, t) ≡ q(x+Ut, y, z). (1.9)

The problem is dynamically equivalent to calculating the interaction of these sources
plus their images in the rigid ground plane (y = 0 in the figure) with the open-ended
duct formed by the tunnel and its image in the ground (figure 1b). The compression
wave propagates into the tunnel, ahead of the train and emerges at the distant tunnel
exit as a pressure pulse, sometimes called the micro-pressure wave, whose amplitude
and duration are determined by the train speed on entry, its cross-sectional area
relative to the tunnel, and the tunnel length (Iida et al. 1996; Maeda et al. 1993;
Ozawa et al. 1991; Swarden & Wilson 1970; Ogawa & Fujii 1994, 1996, 1997;
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Mestreau, Lohner & Aita 1993). The amplitude of the compression wave is typically
of order 0.01 atmospheres for a train whose travel Mach number M = U/co exceeds
about 0.2 (∼ 250 k.p.h), and the pressure rise occurs over a distance (the wavefront
‘thickness’) of order D/M ∼ 5D, where D is the tunnel diameter. The strength of the
micro-pressure wave is proportional to the steepness of the compression wavefront at
the tunnel exit. For tunnels longer than about 3 km with modern concrete slab tracks
(offering little dissipation to the propagating wave), nonlinear wave steepening can
produce peak micro-pressure wave amplitudes of about 50 Pa near the exit, which is
comparable to the sonic boom from a supersonic aircraft.

The principal difficulty in applying the compact approximation (1.8) to the tunnel
entrance problem arises in the determination of φ∗(x). This function is known ana-
lytically for an ideal tunnel consisting of an unflanged, semi-infinite circular cylinder
(Howe 1998a); the exact Green’s function (without the assumption of compactness)
is also known in this case (Levine & Schwinger 1948; Noble 1958; Howe 1998b), and
yields predictions that are in excellent accord with model-scale tests. φ∗(x) can be
determined by numerical integration of Laplace’s equation for more general tunnel
geometries; for example, knowledge of φ∗ for a flanged duct would be of particular
value, since this corresponds more closely with the geometry of a real tunnel portal.
However, there are obvious advantages to be gained from having a representation of
φ∗ in analytic form, and in this paper we show how Rayleigh’s method for estimating
`′ supplies an approximate representation of φ∗(x) for flanged ducts of circular or
rectangular cross-section. The accuracy of this procedure can be estimated by com-
parison with the known analytical solution for a two-dimensional duct (i.e. a duct
with rectangular cross-section and infinite aspect ratio), which can be solved by the
method of conformal transformation.

Rayleigh’s (1926) calculation of φ∗ for a flanged, circular cylindrical duct is summa-
rized in § 2. The corresponding approximation for a two-dimensional duct is compared
with the exact solution in § 3. The case of a flanged duct of rectangular cross-section
is discussed (§ 4), and applied to determine the influence of the entrance flange and
duct cross-sectional shape on the compression wave generated by a train entering a
tunnel.

2. The flanged, circular cylinder
2.1. Rayleigh’s approximation for φ∗(x)

Rayleigh (1926, Appendix A) determined the approximate functional form of the
solution φ∗ of Laplace’s equation, subject to the conditions (1.3), (1.5) for a flanged,
semi-infinite circular cylindrical duct of radius R (figure 1b) by posing the following
representation for the normal component of velocity in the entrance plane:

∂φ∗

∂x
= α

(
1 +

µr2

R2
+
µ′r4

R4

)
, x = 0, r = (y2 + z2)1/2 < R, (2.1)

where µ, µ′ are constants, and continuity requires that

α =
1

1 + µ/2 + µ′/3
. (2.2)

It was argued that, although (2.1) does not become infinite at the sharp edge (r → R)
of the opening (where potential theory predicts that ∂φ∗/∂x ∼ 1/(1 − r/R)1/3), the
approximation should still supply a ‘very good result’ for the end correction provided
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the coefficients µ and µ′ are chosen to make the kinetic energy T ′ of (1.2) a minimum.
The much simpler ‘piston’ approximation, obtained by setting α = 1 and µ = µ′ = 0,
yields the estimate `′ ≈ 0.85R (Rayleigh 1926, § 307), which is only about 4% in
excess of the true value.

Within the tube

φ∗(x) = x− `′ +
∞∑
n=1

AnJ0

(
λn
r

R

)
eλnx/R, x < 0, r < R, (2.3)

where Jν denotes the Bessel function of order ν. This expansion satisfies the axisym-
metric form of Laplace’s equation, and has vanishing normal derivative on the wall
r = R provided λn is the nth positive root of dJ0(λ)/dλ ≡ −J1(λ) = 0 (Abramowitz &
Stegun 1970). The coefficients An are chosen to satisfy condition (2.1), which yields

An =
4αR

λ3
nJ0(λn)

{
µ+ 2µ′

(
1− 8

λ2
n

)}
. (2.4)

The kinetic energy TI of the motion within the section VI , say, of the duct contained
in the interval −` < x < 0 (where `� R) is given by

2TI
ρo

=

∫
VI

(∇φ∗)2 d3x ≡ 2π

∫ R

0

[(
φ∗
∂φ∗

∂x

)
x=0

−
(
φ∗
∂φ∗

∂x

)
x=−`

]
r dr

= πR2

(
`+ 16α2R

∞∑
n=1

[
µ+ 2µ′

(
1− 8/λ2

n

)]2
λ5
n

)
. (2.5)

In the region x > 0 the flow spreads hemispherically, and

φ∗(x) =
−1

2π

∫
So

u(y′, z′) dy′ dz′

(x2 + (y − y′)2 + (z − z′)2)1/2
, x > 0, (2.6)

where the integration is over the open end So of the tube, and u = ∂φ∗/∂x is the
normal velocity (2.1). The kinetic energy TE of the exterior motion can now be
calculated from the formula

2TE
ρo

= −
∫
So

φ∗
∂φ∗

∂x
dy dz. (2.7)

(for details see Rayleigh 1926), whereupon the relation (1.2) satisfied by T ′ = TI +TE
becomes

`+ `′ 6
2

ρoA (TI + TE) = `+16α2R

∞∑
n=1

[
µ+ 2µ′

(
1− 8/λ2

n

)]2
λ5
n

+
8α2R

3π

(
1 +

14µ

15
+

314µ′

525
+

5µ2

21
+

214µµ′

675
+

89µ′2

825

)
. (2.8)

The values of µ, µ′ that minimize the right-hand side are given in the first row of
table 1. The corresponding estimate `′ = 0.8242R for the end correction (obtained by
replacing ‘6’ by ‘=’ in (2.8)) is given in column three of the table, and agrees exactly
with the value found by Rayleigh.

The broken line curve in figure 2 indicates that, because µ and µ′ have different
signs, the normal exit velocity (∂φ∗/∂x)x=0 has a maximum ∼ 0.87 on the axis r = 0
and a minimum (∼ 0.76) near r/R = 0.5. This behaviour is not characteristic of
a potential outflow, where the velocity is expected to increase monotonically with
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µ µ′ `′/R

−1.0120 1.9515 0.8242
0.0 1.1030 0.8254
1.1520 0.0 0.8281

Table 1. Minimizing parameter values for the flanged, circular cylinder.
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Figure 2. Radial distributions of the exit plane normal velocity ∂φ∗/∂x modelled by equation (2.1).

distance from the axis. In § 3 it will be argued that this flow involves a relatively
substantial distribution of vorticity in the exit plane of the duct. A more realistic
exit flow is obtained by setting µ = 0 and minimizing the kinetic energy (2.8) with
respect to variations in µ′ alone. The minimum occurs at µ′ = 1.103, and supplies
a marginally larger estimate of the end correction (see table 1) that also agree with
Rayleigh’s prediction for this case. The exit velocity (solid curve in figure 2) now
varies in much the expected manner, rising to a maximum at r = R that is about
twice that on the axis. The energy can also be minimized after setting µ′ = 0 (table 1,
row 3; Rayleigh 1870), leading to `′ = 0.8281R, but the corresponding parabolic
profile of the exit velocity (dotted in figure 2) is not sufficiently flat over the axial
region of the opening to be an acceptable representation of the actual motion.

2.2. Application to compression wave generation by a high-speed train

These results will now be applied to the problem of figure 1(b), to determine the
compression wave generated by a train entering a tunnel with a flanged portal. The
linear theory solution (1.7) determines the initial compression wave profile, prior to
the onset of nonlinear steepening. It is valid several tunnel diameters ahead of the
train, just after tunnel entry, where the disturbed motion is small enough that the
perturbation pressure is given by the linearized relation p = −ρo∂ϕ/∂t. Thus, using
(1.8), for M2 � 1,

p(x, t) ≈ ρoco

2A
∫
{q(x′+U[t]−Mφ∗(x′), y′, z′)−q(x′+U[t]+Mφ∗(x′), y′, z′)} d3x′, (2.9)

where the retarded time [t] = t+ (x− `′)/co when |x| � R.
The equivalent source distribution q vanishes except near the front and rear ends

of the train, where its cross-section changes significantly. The compression wave is
formed during the passage of the nose of the train into the tunnel, and this interaction
may be isolated by formal consideration of a very long train, whose rear is ignored.



Rayleigh’s computation of the ‘end correction’ 69

During the interaction the source terms q in (2.9) can be expanded in powers of the
Mach number, to obtain, by integration by parts,

p ≈ p(x, t) =
−ρoU
A

∫
φ∗(x′)

∂q

∂x′
(x′ +U[t], y′, z′) d3x′

=
ρoU

A
∫
q(x′ +U[t], y′, z′)

∂φ∗

∂x′
(x′) d3x′, |x| � R in the tunnel. (2.10)

Excellent agreement has been found between predictions of this formula and results
of model scale tests conducted by Maeda et al. (1993) using a configuration similar
to that shown in figure 1(b), but involving an unflanged circular cylinder and a ‘train
+ image’ consisting of a wire-guided, axisymmetric model projected along the axis of
the cylinder (Howe 1998a). The profiled nose of the train was of length L, and the
source distribution was approximated by the line source

q(x) = UAoQ(x)δ(y)δ(z − zT), Q =
1

Ao

∂AT

∂x
(x), (2.11)

where AT(x) is the cross-sectional area of the train at distance x from the nose, so
thatAT(L) ≡ Ao, whereAo is the uniform train cross-section to the rear of the nose,
and the ground level line y = 0, z = zT lies in the vertical plane of symmetry of the
train. Then (2.10) becomes

p(x, t) ≈ ρoU
2Ao

A
∫
Q(x′+U[t])

∂φ∗

∂x′
(x′, 0, zT) dx′, for −x� R, M2 � 1. (2.12)

A special case that yields an overall picture of compression wave formation is that
of a long, ‘snub’ -nosed train with a profiled nose whose length L tends to zero. Then
q(x) reduces to a point source, because Q(x) ≡ (1/Ao) ∂AT/∂x → δ(x) as L → 0,
and by setting Q(x′ +U[t]) = δ(x′ +U[t]) in (2.12) we find

p(x, t) =
ρoU

2Ao

A
(
∂φ∗

∂x′
(x′, 0, zT)

)
x′=−U[t]

, for − x� R, M2 � 1. (2.13)

The approximations (2.3) and (2.6) can be used to evaluate ∂φ∗/∂x′ in this formula
respectively for x′ <> 0, provided the offset zT of the path of the train is not too large,
since the approximations must fail close to the edge of the flange. The flatness of
the solid curve in figure 2 over the central section of the cylinder exit suggests that
such edge effects do not become important until |zT| exceeds about 1

2
R when µ = 0,

µ′ = 1.1030. The curve labelled ‘p’ in figure 3(b) illustrates the compression wave
pressure profile for a snub-nosed train calculated for this case when zT = 0; it is
plotted as a function of the non-dimensional retarded time U[t]/R, which is defined
such that the nose of the train (in this case, the point source) crosses the entrance
plane of the cylinder at U[t]/R = 0.

The compression wave ‘gradient’ ∂p(x, t)/∂t is frequently measured in experiments,
because its magnitude at the far end of a tunnel determines the amplitude of the
micro-pressure wave pulse. The present calculations determine only the initial profile
of the compression wave, since the nonlinear steepening that can occur in a long
tunnel is ignored. Nevertheless, if the initial pressure gradient is sufficiently small
(corresponding to a compression wave with a ‘long’ rise time) subsequent nonlinear
steepening is often inhibited by dissipative mechanisms associated, for example, with
frictional losses in ballast interstices.
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It follows from (2.12) that the initial pressure gradient can be written

∂p

∂t
(x, t) ≈ −ρoU

3Ao

A
∫
Q(x′ +U[t])

∂2φ∗

∂x′2
(x′, 0, zT) dx′, for − x� R, M2 � 1.

(2.14)
For the snub-nosed train this simplifies to

∂p

∂t
(x, t) ≈ −ρoU

3Ao

A
(
∂2φ∗

∂x′2
(x′, 0, zT)

)
x′=−U[t]

, for − x� R, M2 � 1. (2.15)

In general the second derivative ∂2φ∗/∂x2 calculated by Rayleigh’s method is dis-
continuous across the tunnel entrance plane, because the approximation implicitly
includes a distribution of vorticity over x = 0. Therefore, in using (2.14), (2.15) to eval-
uate the pressure gradient in the immediate vicinity of x = 0, the value of ∂2φ∗/∂x2

is approximated there by the mean of its values on both sides of the discontinuity.
The magnitude of the discontinuity is small, and this procedure supplies a smoothly
varying pressure gradient, as indicated by the ∂p/∂t curve in figure 3(b).
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distributions when φ∗ satisfies (3.1). (c) Comparison of the case (ii) approximation (—–) with exact
results (• • •) on the x-axis.

The influence of the tunnel entrance flange can be seen by comparison with the
exact predictions for an unflanged circular cylinder (Howe 1998a, b), which are
reproduced in figure 3(c). The flange inhibits the motion of fluid displaced by the
advancing train, causing an increased rise in pressure prior to the entry of the train
into the tunnel. However, because the overall pressure rises are the same in both
cases, the pressure gradient is smaller for the flanged entrance, the maximum being
about 85% of that for the unflanged entrance.

3. The potential φ∗ in two dimensions
A measure of the accuracy of Rayleigh’s approximation furnished by the two-

parameter representation (2.1) of ∂φ∗/∂x in the exit plane can be obtained by
considering the two-dimensional problem (figure 4a) of flow from a uniform flanged
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duct of width 2a. However, at large distances from the opening in x > 0

φ∗ ∼ 2a

π
ln r, r = (x2 + y2)1/2,

and the usual end correction does not exist, because the kinetic energy of the exterior
motion is now infinite. But, the formal procedure of § 2 is still applicable, with

∂φ∗

∂x
= α

(
1 +

µy2

a2
+
µ′y4

a4

)
, x = 0, −a < y < a, where α =

1

1 + µ/3 + µ′/5
.

(3.1)
The kinetic energies TI, TE of the flow are evaluated per unit span (out of the plane
of the paper in the figure) respectively in the section −` < x < 0 of the duct, and
within the semi-circular domain r < R in x > 0, where ` and R are both assumed to
be large compared to the duct width 2a.

To do this we set

φ∗(x, y) =
α

π

∫ a

−a

(
1 +

µy′2

a2
+
µ′y′4

a4

)
ln (x2 + (y − y′)2)1/2 dy′, x > 0,

= x− `′ +
∞∑
n=1

An cos
(nπy
a

)
enπx/a, x < 0, (3.2)

where `′ may now be regarded as an arbitrary constant, and the condition (3.1) gives

An =
4αa(−1)n

n3π3

{
µ+ 2µ′

(
1− 6

n2π2

)}
. (3.3)

Using these formulae (as in § 2) it is readily deduced that

TI

ρoa
= `+ 8aα2

∞∑
n=1

[
µ+ 2µ′

(
1− 6/n2π2

)]2
n5π5

,

TE

ρoa
=

2a

π
ln

(R
a

)
+
α2a

2π

(I0,0 + 2µI2,0 + 2µ′I4,0 + µ2I2,2 + 2µµ′I4,2 + µ′2I4,4

)
,


(3.4)

where

Ii,j = Ij,i = −
∫∫ 1

−1

λiξj ln |ξ − λ|dλ dξ > 0. (3.5)

Table 2 lists the values of µ, µ′ that minimize

∆ =
TI + TE

ρoa2
−
[
`

a
+

2

π
ln

(R
a

)]
(3.6)

for the three different cases where (i) µ and µ′ vary independently, (ii) µ = 0, (iii)
µ′ = 0.

Although the smallest value of ∆ is obtained for case (i), we shall still reject this in
approximating φ∗, because it yields a normal velocity ∂φ∗/∂x in the exit plane of the
channel that varies in the manner indicated previously by the broken-line curve in
figure 2 for the corresponding approximation for the flanged, circular tube. As in § 2,
we shall regard case (ii) as providing the best overall approximation to the irrotational
exit flow. This choice may be justified by consideration of the discontinuity

∂φ∗

∂y
(+ 0, y)− ∂φ∗

∂y
(− 0, y)
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µ µ′ ∆

−0.6552 1.7922 0.4851
0.0 1.0893 0.4858
0.9093 0.0 0.4890

Table 2. Energy minimizing values for two-dimensional flow.
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Figure 5. Rectangular tunnel portal.

in the transverse component of velocity. This is just the strength of the vortex sheet
that must span the channel exit when ∂φ∗/∂x is approximated by (3.1), and would
vanish if (3.1) were exact. It is plotted for all three cases in figure 4(b). The vorticity
is logarithmically large at the edges, but there are also significant distributions of
vorticity near the axis of the channel in cases (i) and (iii), whereas for case (ii) the
vorticity is confined to the outer regions. In particular, this implies for case (ii) that,
in the neighbourhood of y = 0, the magnitude of the discontinuity in ∂2φ∗/∂x2 at
x = 0 will tend to be small.

The solid curves in figure 4(c) indicate the variations of ∂φ∗/∂x and ∂2φ∗/∂x2

along the duct axis calculated from the approximation (3.2) in case (ii). The value of
∂2φ∗/∂x2 at x = 0 is obtained by averaging values on either side of the discontinuity,
as described in § 2. But, these quantities can also be calculated exactly, and are plotted
as dotted curves in figure 4(c), from the relations

φ∗(x, y) = Re (w), w =
2a

π
ln ζ(Z), (3.7)

where Z = x+ iy. The two-dimensional fluid region bounded by the flanged channel
is mapped onto the upper half of the ζ-plane by

Z =
2a

π

{
ln
[
1 + i(ζ2 − 1)1/2

]− ln ζ − i(ζ2 − 1)1/2
}− ia, (3.8)

where the outflow is equivalent to that from a source of strength 2a at ζ = 0.
This comparison shows that case (ii) of Rayleigh’s method yields excellent approxi-

mations for both ∂φ∗/∂x and ∂2φ∗/∂x2, even close to the exit plane x = 0.

4. Tunnel with rectangular portal
4.1. Calculation of φ∗

Rayleigh’s method is next applied to a tunnel of rectangular cross-section, with a
flanged portal of height a and width b, as illustrated schematically in figure 5. φ∗
describes potential flow from a rectangular duct of cross-section 2a × b obtained by
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Figure 6. Dependence on b′/a of µa, µb and the end correction `′ normalized by the radius R
of the circular cylinder whose cross-sectional area equals that of the rectangular duct (πR2 = 2ab,
b = 2b′).

removing the ground plane and introducing the image of the tunnel in y = 0. The
results of §§ 2, 3 strongly imply that an efficient approximation is obtained by setting

∂φ∗

∂x
= α

(
1 +

µay
4

a4
+
µbz

4

b′4

)
, for x = 0,

where

α =
1

1 + (µa + µb)/5
and b′ =

b

2
. (4.1)

Then φ∗(x) is given by an integral of the form (2.6) in the region x > 0 outside the
tunnel, where u(y, z) is the exit-plane velocity defined by (4.1). Within the tunnel (in
x < 0) the appropriate solution of Laplace’s equation is

φ∗(x) = x− `′ +
∞∑
n=1

8α(−1)n

n3π3

(
1− 6

n2π2

)
×
{
aµa cos

(nπy
a

)
enπx/a + b′µb cos

(nπz
b′
)

enπx/b
′}
, (4.2)

where `′ is the end correction.
The analogue of the energy relation (2.8) is

`′ 6 32α2(aµ2
a + b′µ2

b)

∞∑
n=1

1

n5π5

(
1− 6

n2π2

)2

+
α2a2

8πb′

×(Î0,0,0,0 + 2µaÎ4,0,0,0 + 2µbÎ0,0,4,0 + 2µaµbÎ4,0,4,0 + µ2
aÎ4,4,0,0 + µ2

bÎ0,0,4,4), (4.3)

where

Îi,j,k,l =
( a
b′
)k+l ∫∫ 1

−1

dξ dη

∫∫ b′/a

−b′/a
ξiηjλkχl dλ dχ

((ξ − η)2 + (λ− χ)2)1/2
. (4.4)

The two terms on the right of (4.3) correspond respectively to the contributions to
the kinetic energy of the exit flow (i.e. the end correction) from the interior (x < 0)
and exterior (x > 0) regions. The values of µa and µb that minimize the right-hand
side of (4.3) are plotted in figure 6 against b′/a, and listed in table 3. Note that
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b′/a µa µb `′/R b′/a µa µb `′/R

1.00 0.868 0.868 0.813 3.25 1.056 0.541 0.753
1.25 0.919 0.812 0.811 3.50 1.062 0.520 0.746
1.50 0.955 0.763 0.806 3.75 1.068 0.501 0.739
1.75 0.981 0.720 0.799 4.00 1.073 0.483 0.732
2.00 1.001 0.682 0.792 4.25 1.077 0.467 0.725
2.25 1.017 0.648 0.784 4.50 1.081 0.451 0.719
2.50 1.030 0.617 0.776 4.75 1.084 0.437 0.713
2.75 1.040 0.589 0.768 5.00 1.086 0.424 0.707
3.00 1.049 0.564 0.761

Table 3. Energy minimizing values for a rectangular portal (b′ = 1
2
b).

1.2

0.8

0.4

0

0.8

0.4

0

–3 –2 –1 0 1 2 3

4

2

1

a
b

2
1

b/a = 4

(a)

(b)

P
re

ss
ur

e 
gr

ad
ie

nt
P

re
ss

ur
e

U [t ]/a

Figure 7. (a) Non-dimensional pressure p/(ρoU
2Ao/A) and (b) pressure ‘gradient’ (∂p/∂t)/

(ρoU
3Ao/Aa) for a snub-nosed train entering a flanged, rectangular cylindrical tunnel when

M2 � 1 and aspect ratios b/a = 1, 2, 4.

µa,b(b
′/a) = µb,a(a/b

′). The broken line curve in the figure is the ratio `′/R of the end
correction to the radius R = (2ab/π)1/2 of the circular cylindrical duct of the same
cross-sectional area. The end correction for a flanged circular cylinder ≈ 0.82R, and
the figure and table 3 show that the end correction of the rectangular duct is within
15% of that for a circular duct of the same cross-section for b′/a as large as 5.

4.2. The compression wave

The dependences on the tunnel aspect ratio b/a of the compression wave pressure
profile p(x, t) and pressure ‘gradient’ ∂p(x, t)/∂t are illustrated in figure 7 for a snub-
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nosed train modelled by a point source entering the tunnel along the x-axis, where
they are plotted against the non-dimensional retarded time U[t]/a. These results
demonstrate how the initial waveform progressively steepens as the width b of the
tunnel decreases. They are calculated from equations (2.13) and (2.15) for M2 � 1
and zT = 0, when φ∗(x) is defined by (4.2) within the tunnel and by (2.6) outside. The
values of µa, µb for the square portal, for which b/a = 1, are obtained by interchanging
the values given in table 3 for b′/a = 2.

Model-scale measurements have been made of the pressure and pressure gradient of
the compression wave generated when an axisymmetric, wire-guided model ‘train’ is
projected along the axis of a 7 m long, unflanged circular cylinder of radius R = 0.0735
m (Maeda et al. 1993). This corresponds to the situation illustrated in figure 1(b), but
in the absence of the flange, where the axisymmetric projectile represents the train
and its image in the ground plane. The train nose profiles (of length L) included the
cone, and the paraboloid and ellipsoid of revolution with respective cross-sectional
areas

AT(x)

Ao

=

{
x2/L2, x/L, x/L

(
2− x/L) , 0 < x < L,

1, x > L,
(4.5)

where x is measured from the tip of the nose, and Ao = πh2, where h is the radius of
the uniform section of the axisymmetric model train to the rear of the profiled nose.
The corresponding source densities Q, defined as in (2.11), are given by

Q(x) =

{
2x/L2, 1/L, 2/L

(
1− x/L) , 0 < x < L,

0, elsewhere.
(4.6)

The values of the ‘pressure gradient ∂p/∂t measured at 1 m from the tunnel entrance
plane were found to be about 8% larger than the small Mach number approximation
(2.14) (see Howe 1998a, who used the known, analytic form of the potential φ∗ for
an unflanged circular cylinder) for the following parameter values:

h

L
= 0.2,

Ao

A = 0.116, M = 0.19.

In figure 8(a–c) we compare the pressure gradient profiles for these same parameter
values for three different tunnels: (a) the square portal, corresponding to b/a = 1
in figure 7; (b) the flanged, circular cylindrical tunnel of radius R of § 2; (c) the
unflanged circular cylindrical tunnel of Howe (1998a). The tunnels have equal cross-
sectional areas (i.e. πR2 = 2a2 or a = R(π/2)1/2) and retarded times are all taken in
the non-dimensional form U[t]/R, and the pressure gradients are normalized as(

RA
ρoU3Ao

)
∂p

∂t
.

In all cases the profiles are determined by equation (2.15) with zT = 0. The pres-
sure gradient profiles are qualitatively the same for all three tunnels, and exhibit a
remarkably weak dependence on portal geometry. The largest peak values occur for
the unflanged circular cylinder (c), which are between 6 and 10% larger than the
corresponding peaks for the flanged circular cylinder, and about 3% larger than those
for the square portal. The differences in predictions for the different nose shapes for
the same tunnel are discussed by Howe (1998a).
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Figure 8. Non-dimensional pressure ‘gradient’ (∂p/∂t)/(ρoU
3Ao/AR) for axisymmetric model trains

with conical, paraboloidal and ellipsoidal nose profiles, for M2 � 1, h/L = 0.2 andAo/A = 0.116:
(a) square portal; (b) flanged, circular cylinder; (c) unflanged circular cylinder. The tunnels have
equal cross-sectional areas and all lengths are non-dimensionalized by the radius R of the circular
cylinder (so that a = R(π/2)1/2).

5. Conclusion
Rayleigh derived an accurate value for the end correction for a flanged circular

cylinder by application of Kelvin’s minimum energy principle to estimate an ap-
proximate analytic form for the potential of irrotational flow from the cylinder. The
particular potential φ∗ that represents flow at unit speed deep inside the cylinder also
occurs in the Green’s function that governs the generation of pressure waves within
the cylinder by sources near the cylinder entrance. Such waves are produced when a
high-speed train enters a tunnel. Uniformly translating monopole sources of constant
strength can be used to model the displacement of air by the train, and Rayleigh’s
method can be used to obtain an analytic representation of the compression wave.
The procedure has been demonstrated for flanged, cylindrical tunnels of semi-circular
and rectangular cross-section, for which exact analytic representations of φ∗ are not
available. It has been justified by comparison of Rayleigh’s approximation for φ∗ for
a two-dimensional flanged duct with the exact solution obtained by the method of
conformal transformation.

The specific results and illustrations given in this paper are strictly valid for train
Mach numbers satisfying M2 � 1. However, it has been shown by Howe (1998c) that
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predictions derived for low Mach numbers can be extrapolated to values of M as
large as 0.4 by the following modified form of (2.14):

p(x, t) ≈ ρoU
2Ao

(1−M2)A
∫
Q(x′ +U[t])

∂φ∗

∂x′
(x′, 0, zT) dx′, (5.1)

where φ∗(x) may be approximated by Rayleigh’s method.
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